skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Jung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Debugging process plays a crucial role in helping students pinpoint their specific learning weaknesses, allowing them to modify their strategies for enhanced academic performance. Notably, changes in pupil dilation serve as an indicator of arousal associated with confronting learning challenges. This physiological response acts as a “physiological footprint” that reflects cognitive engagement, facilitating internally focused cognitive processes such as insight generation and mind-wandering. In this study, we proposed that pupil dilation could be a valuable predictor of students’ metacognitive awareness throughout the debugging process, specifically within an augmented reality (AR) learning environment. The findings revealed significant differences in pupil dilation among students categorized by their varying levels of debugging, which represents a specific dimension of the Metacognitive Awareness Inventory. 
    more » « less
    Free, publicly-accessible full text available October 15, 2026
  2. Free, publicly-accessible full text available December 1, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Free, publicly-accessible full text available June 4, 2026
  5. Free, publicly-accessible full text available April 1, 2026
  6. This study explores the application of slouching scores to assess ergonomic posture in augmented reality (AR) environments. Employing Microsoft HoloLens 2 with Xsens motion capture technology, participants engaged in interactive biomechanics tasks, including a practical luggage-lifting exercise. Real-time feedback guided users towards safe posture, emphasizing spinal alignment and reducing physical strain. Slouching scores functioned as quantitative measures of posture quality, establishing a connection between unsafe postures and the requisite postural adjustments. The results illustrate how AR-integrated systems can enhance posture awareness, improve user ergonomics, and promote active learning in both educational and professional settings. 
    more » « less
  7. In the context of student learning, investigating effective feedback mechanisms within augmented reality (AR) learning systems is crucial for better understanding and optimizing study behaviors. This study examines the influence of metacognitive monitoring feedback within an AR setting. Our hypothesis suggests that regularly providing students with feedback on their metacognitive monitoring within an AR learning environment has a beneficial effect on their metacognitive state. The results of the study confirm that frequent exposure to such feedback significantly improves scores on the Metacognitive Awareness Inventory. Essentially, there was a marked increase in the inventory scores of participants who received ongoing feedback, compared to those who only received metacognitive monitoring feedback once after the lecture, particularly in the areas of planning, monitoring comprehension, and debugging strategies. This enhancement is achieved by influencing student calibration by directly impacting their metacognitive state. 
    more » « less
  8. With the growing need for augmented reality (AR) technology, understanding and optimizing study behaviors in AR learning environments has become crucial. However, one major drawback of AR learning is the absence of effective feedback mechanisms for students. To overcome this challenge, we introduced metacognitive monitoring feedback. Additionally, we created a location-based AR learning environment utilizing a real-time indoor tracking system to further enhance student learning. This study focuses on the positive impact of metacognitive monitoring feedback in a location-based AR learning environment. Our hypothesis posits that regularly providing students with feedback on their metacognitive monitoring within this new AR learning system positively influences their metacognitive awareness. The study's findings confirm that frequent exposure to such feedback significantly enhances the Metacognitive Awareness Inventory (MAI) scores. Participants who received continuous feedback demonstrated a significant increase in MAI scores compared to those who received feedback only once after the lecture. This improvement is achieved by influencing student calibration and directly enhancing their metacognitive awareness. 
    more » « less
  9. WO3/WS2 core/shell nanowires were synthesized using a scalable fabrication method by combining wet chemical etching and chemical vapor deposition (CVD). Initially, WO3 nanowires were formed through wet chemical etching using a potassium hydroxide (KOH) solution, followed by oxidation at 650 °C. These WO3 nanowires were then sulfurized at 900 °C to form a WS2 shell, resulting in WO3/WS2 core/shell nanowires with diameters ranging from 90 to 370 nm. The synthesized nanowires were characterized using scanning electron microscopy (SEM), Raman, energy-dispersive X-ray spectroscopy (EDS), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). The shell is composed of 2D WS2 layers with uniformly spaced 2D layers as well as the atomically sharp core/shell interface of WO3/WS2. Notably, the WO3/WS2 heterostructure nanowires exhibited a unique negative photoresponse under visible light (405 nm) illumination. This negative photoresponse highlights the importance of interface engineering in these heterostructures and demonstrates the potential of WO3/WS2 core/shell nanowires for applications in photodetectors and other optoelectronic devices. 
    more » « less
  10. There is an increasing demand for developing new metrics that can effectively measure the physical demand experienced by users in augmented reality (AR) environments. In this study, we evaluated one of the recent metrics, called “slouching score,” in an AR-based biomechanics lecture. This study aims to uncover the correlation between the AR interaction and the physical demand of users in a different setup compared to the earlier study. The slouching score, which evaluates posture changes that may indicate fatigue during AR interactions, is measured using Xsens motion capture equipment. These calculated scores are compared with responses to physical demand assessments surveyed using NASA-TLX questionnaires. One of the key differences between the current study and earlier ones is that participants had to physically move to access the next AR module in earlier studies. In contrast, this time, participants simply needed to click a virtual arrow button to view the next AR modules, eliminating the need for physical movement. Our preliminary findings show correlations between the slouching score from some modules and the NASA-TLX physical demand ratings. 
    more » « less